Mọi ý kiến đóng góp xin gửi vào hòm thư: [email protected]
Tổng hợp các đề cương đại học hiện có của Đại Học Hàng Hải: Đề Cương VIMARU
Kéo xuống để Tải ngay đề cương bản PDF đầy đủ: Sau “mục lục” và “bản xem trước”
(Nếu là đề cương nhiều công thức nên mọi người nên tải về để xem tránh mất công thức)
Đề cương liên quan:5 kỹ năng mềm cần có trong mọi cuộc phỏng vấn
Mục Lục
- Phần 1 SỐ PHỨC TRONG MATLAB
- 1. Lệnh real, imag
- 1.1. Ý nghĩa
- 1.2. Cú pháp
- 1.3. Ví dụ
- 2. Lệnh abs
- 2.1. Ý nghĩa: tìm modul của số phức
- 2.2. Cú pháp: y=abs(z)
- 2.3. Ví dụ
- 3. Lệnh angle
- 3.1. Ý nghĩa: Tìm agument của số phức với đơn vị là radian
- 3.2. Cú pháp: y=angle(z)
- 3.3. Ví dụ
- 4. Lệnh conj
- 4.1 Ý nghĩa: Lấy số phức liên hợp của số phức
- 4.2 Cú pháp: y= conj(z)
- 4.3 Ví dụ
- Phần 2 MA TRẬN TRONG MATLAB
- 1. Lệnh numel(A): Đếm số phần tử của a
- 2. Lệnh size: Cho biết số dòng và cột của một ma trận
- 3. Ghép 2 ma trận theo cột:
- 4. Lệnh inv(A): Tìm ma trận nghịch đảo của ma trận
- 5. Lệnh Ak:
- 6. Câu lệnh [A B] :Ghép 2 ma trận theo hàng.
- 7. Câu lệnh A(:,n)=[ ] : Xóa cột thứ n của ma trận A
- 8. Câu lệnh A(:,n:end) : Cho phép lấy từ cột thứ n đến cột cuối của ma trận.
- 9. Câu lệnh A(n,:)=[ ] : Xóa hàng thứ n của ma trận A.
- 10. Lệnh zeros(n) : Tạo ma trận toàn số 0 cấp n
- 11. Lệnh eye(n): Tạo ma trận đơn vị cấp n:
- 12. Lệnh ones(n) : Tạo ma trận toàn số 1 cấp n:
- 13.Lệnh rank(A) : Tính hạng của ma trận:
- 14. Lệnh trace(A) : Tính vết của ma trận:
- 15. Lệnh A’ : Ma trận chuyển vị:
- 16. Lệnh det(B): Định thức
- 17. Lệnh tril(T) : Trích ra ma trận tam giác dưới từ ma trận T
- 18. Lệnh triu(T) : Trích ra ma trận tam giác trên từ ma trận T
- 19. Lệnh reshape(A,m,n) : Viết lại ma trận A
- 20. Lệnh A\b : Giải hệ phương trinh Ax=b
- 21. Lệnh [Q,R]=qr(Y) hoặc [L,U]=lu(Y) : Phân tích hai ma trận
- 22. Lệnh A[] : Tạo ma trận rỗng
- 23. Lệnh A(i,j) : Tham chiếu phần tử dòng i cột j
- 24.Lệnh A(i,:) và A(:,j) : tham chiếu dòng i và tham chiếu cột j
- 26. Lệnh rref(A) : Tạo ma trận bậc thang từ A
- 27.Lệnh FLIPLR : Chuyển các phần tử của các ma trận theo thứ tự cột ngược lại.
- 28. Lệnh FLIPUD : Chuyển các phần tử của ma trận theo thứ tự hàng ngược lại.
- 30. Lệnh PASCAL :Tạo ma trận theo quy luận tam giác Pascal.
- 31. Lệnh RAND : Tạo ma trận mà kết mà giá trị của các phần tử là ngẫu nhiên.
- 32.Lệnh ROT90 : Xoay ma trận 900.
- 33.Lệnh isempty : Kiểm tra xem ma trận có là ma trận rỗng không
- 34.Lệnh DIAG : Tạo ma trận mới và xử lý đường chéo theo quy ước.
- Phần 3 MỘT SỐ LỆNH LẦN KHÔNG GIAN VECTOR, KHÔNG GIAN EUCLIDE, TRỊ GIÊNG
- 1. Lệnh dot:( tính tích vô hướng 2 vectơ)
- 2. Lệnh cross(u,v) : Tích hữu hướng của u, v
- 3. Lệnh length : Tính chiều dài của vectơ
- 4.Lệnh norm:(tính độ dài 1 vectơ bất kì)
- 5.Lệnh qr:(trực chuẩn hóa họ vectơ cột A)
- 6.Lệnh [P,D]=eig(A) : Chéo hóa
- 7. Lệnh eig(H) : Trị riêng
- 8. Lệnh max(X), min(X) : Trả về giá trị lớn nhất và nhỏ nhất trong vector X
- Phần 4 ĐÁNH GIÁ NHẬN XÉT CỦA GIÁO VIÊN
Tải ngay đề cương bản PDF tại đây: Bài tập lớn Đại số tuyến tính
Phần 1 SỐ PHỨC TRONG MATLAB
Ta có i là đơn vị phức >> i2 ans=-1
1. Lệnh real, imag
1.1. Ý nghĩa
Real: lấy phần thực của số phức
Imag: lấy phần ảo của số phức
1.2. Cú pháp
phanthuc= real(z)
phanao= imag(z)
1.3. Ví dụ
>>z=5+6i
>>phanthuc=real(z)
phanthuc=
5
>>phanao=imag(z)
phanao=
6
2. Lệnh abs
2.1. Ý nghĩa: tìm modul của số phức
2.2. Cú pháp: y=abs(z)
2.3. Ví dụ
>>z=3+4i
z=
3.000 + 4.000i
>> Modul=abs(z)
Modul= 5
3. Lệnh angle
3.1. Ý nghĩa: Tìm agument của số phức với đơn vị là radian
3.2. Cú pháp: y=angle(z)
3.3. Ví dụ
>> z= 3+4i
z =
3.0000 + 4.0000i
>> agumen=angle(z)
agumen =
0.9273
4. Lệnh conj
4.1 Ý nghĩa: Lấy số phức liên hợp của số phức
4.2 Cú pháp: y= conj(z)
4.3 Ví dụ
>> z=3+4iz =
3.0000 + 4.0000i
>> conj(z)
ans =
3.0000 – 4.0000i
Phần 2 MA TRẬN TRONG MATLAB
1. Lệnh numel(A): Đếm số phần tử của a
Ví dụ
» A = [01 09 77; 20 04 2001 ]
A =
1 9 77
20 4 2001
»u=numel(A)
u=6
2. Lệnh size: Cho biết số dòng và cột của một ma trận
Ví dụ
>> A= [1 3;4 5;2 6]
A =
1 3
4 5
2 6
fx >> size (A)
ans =
3 2
fx >> size (A,1)
ans =
3
fx >> size (A,2)
ans =
2
3. Ghép 2 ma trận theo cột:
a, Lệnh: C=[A;B]
Với: – A,B là 2 ma trận cho trước
– C là ma trận cần tìm
b, Ví dụ: Cho ma trận A= [1 2], B=[ 6 7] , Ghép 2 ma trận A,B theo cột
>> C =[1 2;3 4]
C =
1 2
3 4
4. Lệnh inv(A): Tìm ma trận nghịch đảo của ma trận
Ví dụ :
>> A=[1 2;2 5]
A =
1 2
2 5
>> inv(A)
ans =
5 -2
-2 1
5. Lệnh Ak:
Với: – A là ma trận đã cho và k là hệ số mũ cần tính
Ví dụ:
Bài 1: Cho ma trận A=[1 2;2 4]
>>A =
1 2
2 4
>> B=A3
B =
25 50
50 100
6. Câu lệnh [A B] :Ghép 2 ma trận theo hàng.
-Cú pháp:[A B].
-Ví dụ:
>> A=[1 2 3 4;5 6 7 5;3 4 2 1;6 8 4 1]
A =
1 2 3 4
5 6 7 5
3 4 2 1
6 8 4 1
>> B=[3 2 4 5;6 3 6 2;3 5 2 3;5 7 8 9]
B =
3 2 4 5
6 3 6 2
3 5 2 3
5 7 8 9
>> [A B]
ans =
1 2 3 4 3 2 4 5
5 6 7 5 6 3 6 2
3 4 2 1 3 5 2 3
6 8 4 1 5 7 8 9
7. Câu lệnh A(:,n)=[ ] : Xóa cột thứ n của ma trận A
>> B=[3 2 4 5;6 3 6 2;3 5 2 3;5 7 8 9]
B =
3 2 4 5
6 3 6 2
3 5 2 3
5 7 8 9
>> B(:,1)=[]
B =
2 4 5
3 6 2
5 2 3
- 8 9
8. Câu lệnh A(:,n:end) : Cho phép lấy từ cột thứ n đến cột cuối của ma trận.
-Cú pháp:A(:,n:end).
-Ví dụ:
>> A=[1 2 3 4;5 6 7 5;3 4 2 1;6 8 4 1]
A =
1 2 3 4
5 6 7 5
3 4 2 1
6 8 4 1
>> A(:,2:end)
ans =
2 3 4
6 7 5
4 2 1
8 4 1
9. Câu lệnh A(n,:)=[ ] : Xóa hàng thứ n của ma trận A.
-Cú pháp:A(n,:)=[]
-Ví dụ:
>> A=[1 2 3 4;5 6 7 5;3 4 2 1;6 8 4 1]
A =
1 2 3 4
5 6 7 5
3 4 2 1
6 8 4 1
>> A(2,:)=[]
A =
1 2 3 4
3 4 2 1
6 8 4 1
10. Lệnh zeros(n) : Tạo ma trận toàn số 0 cấp n
Ví dụ
>> S=zeros(3): n=3
S =
0 0 0
0 0 0
0 0 0
11. Lệnh eye(n): Tạo ma trận đơn vị cấp n:
Ví dụ
>> T=eye(2)
T =
1 0
0 1
12. Lệnh ones(n) : Tạo ma trận toàn số 1 cấp n:
Ví dụ
>> Q=ones(4)
Q =
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
13.Lệnh rank(A) : Tính hạng của ma trận:
Ví dụ
>> A=[1 1 1;2 2 2;3 3 3]
A =
1 1 1
2 2 2
3 3 3
>> rank(A)
ans =
1
14. Lệnh trace(A) : Tính vết của ma trận:
Ví dụ
>> A=[1 1 1;2 2 2;3 3 3]
A =
1 1 1
2 2 2
3 3 3
>> trace(A)
ans =
6
15. Lệnh A’ : Ma trận chuyển vị:
Ví dụ
A=[1 2 3;4 5 6;-1 -1 3]
A =
1 2 3
4 5 6
-1 -1 3
>> A’
ans =
1 4 -1
2 5 -1
3 6 3
16. Lệnh det(B): Định thức
Ví dụ
>> B=[1 6;-3 4 ]
B =
1 6
-3 4
>> det(B)
ans =
22
17. Lệnh tril(T) : Trích ra ma trận tam giác dưới từ ma trận T
Ví dụ
>> T=[1 2 3; 4 4 4; -1 2 3]
T =
1 2 3
4 4 4
-1 2 3
>> tril(T)
ans =
1 0 0
4 4 0
-1 2 3
18. Lệnh triu(T) : Trích ra ma trận tam giác trên từ ma trận T
Ví dụ:
>> T=[1 2 3; 4 4 4; -1 2 3]
T =
1 2 3
4 4 4
-1 2 3
>> triu(T)
ans =
1 2 3
0 4 4
0 0 3
19. Lệnh reshape(A,m,n) : Viết lại ma trận A
Ví dụ:
>> A=[1 0 0 1;1 0 2 0;0 0 1 0;1 2 3 4;1 1 1 1]
A =
1 0 0 1
1 0 2 0
0 0 1 0
1 2 3 4
1 1 1 1
>> reshape(A,4,5)
ans =
1 1 2 1 0
1 0 1 3 0
0 0 0 1 4
1 0 2 1 1
20. Lệnh A\b : Giải hệ phương trinh Ax=b
Ví dụ:
Cho hệ phương trình , tìm [x1; x2; x3].
>> A=[1 -1 1;0 10 25;20 10 0]
A =
1 -1 1
0 10 25
20 10 0
>> b=[0; 90; 80]
b =
0
90
80
>> A\b
ans =(các nghiệm ứng với các hàng)
2.0000
4.0000
2.0000
21. Lệnh [Q,R]=qr(Y) hoặc [L,U]=lu(Y) : Phân tích hai ma trận
Cú pháp:- [Q,R]=qr(Y): phân tích Y thành tích 2 ma trận Q và R
– [L,U]=lu(Y): phân tích Y thành tích 2 ma trận L và U
Với Y là ma trận cho trước
Ví dụ:
>> Y=[1 1 1;1 0 1;0 1 1]
Y =
1 1 1
1 0 1
0 1 1
>> [Q,R]=qr(Y)
Q =
0.7071 0.4082 -0.5774
0.7071 -0.4082 0.5774
0 0.8165 0.5774
R =
1.4142 0.7071 1.4142
0 1.2247 0.8165
0 0 0.5774
>> [L,U]=lu(Y)
L =
1 0 0
1 1 0
0 -1 1
U =
1 1 1
0 -1 0
0 0 1
22. Lệnh A[] : Tạo ma trận rỗng
Ví dụ:
A=[ ]
A =
[]23. Lệnh A(i,j) : Tham chiếu phần tử dòng i cột j
Ví dụ >> A=[ 1 2 3; 4 5 6; 7 8 9]
A =
1 2 3
4 5 6
7 8 9
>> A(2,3)
ans =
6
24.Lệnh A(i,:) và A(:,j) : tham chiếu dòng i và tham chiếu cột j
Ví dụ: Cho A=[ 1 2 5; 5 8 6; 8 4 3]
A =
1 2 5
5 8 6
8 4 3
>> A(2,:)
ans =
5 8 6
>> A(:,3)
ans =
5
6
3
- Lệnh A(i :k, 🙂 và A( :,j :k) : Tham chiếu từ dòng i dến dòng k và Tham chiếu từ cột j đến cột k
Ví dụ A=[ 1 5 2; 5 6 8; 9 7 3]
A =
1 5 2
5 6 8
9 7 3
>> A(1:2,:)
ans =
1 5 2
5 6 8
>> A(:,1:2)
ans =
1 5
5 6
9 7
26. Lệnh rref(A) : Tạo ma trận bậc thang từ A
Ví dụ
A=[ 1 2; 2 1; 3 5]
A =
1 2
2 1
3 5
>> rref(A)
ans =
1 0
0 1
0 0
27.Lệnh FLIPLR : Chuyển các phần tử của các ma trận theo thứ tự cột ngược lại.
– Cú pháp: b = fliplr(a)
– Giải thích:
b: tên ma trận được chuyển đổi.
a: tên ma trận cần chuyển đổi.
Ví dụ:
a =
0 1 2 3 4
5 6 7 8 9
b = fliplr(a)
4 3 2 1 0
9 8 7 6 5
28. Lệnh FLIPUD : Chuyển các phần tử của ma trận theo thứ tự hàng ngược lại.
– Cú pháp: b = flipud(a)
– Giải thích:
b: tên ma trận được chuyển đổi.
a: tên ma trận cần chuyển đổi.
- Ví dụ:
>>a= [ 1 4; 2 5; 3 6]
a =
1 4
2 5
3 6
>>b = flipud(a)
b =
3 6
2 5
1 4
- Lệnh MAGIC : Tạo 1 ma trận vuông có tổng của các phần tử trong 1 hàng, 1 cột hoặc trên đường chéo bằng nhau.
– Cú pháp: Tên ma trận = magic(n)
– Giải thích:
n: kích thước ma trận.
Giá trị của mỗi phần tử trong ma trận là một dãy số nguyên liên tục từ 1 đến 2n.
Tổng các hàng, cột và các đường chéo đều bằng nhau.
Ví dụ:
>>tmt = magic(3)
tmt =
8 1 6
3 5 7
4 9 2
30. Lệnh PASCAL :Tạo ma trận theo quy luận tam giác Pascal.
– Cú pháp:pascal (n)
– Giải thích:n: là số hàng (cột)
Ví dụ:
pascal(4)
ans =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20
31. Lệnh RAND : Tạo ma trận mà kết mà giá trị của các phần tử là ngẫu nhiên.
– Cú pháp:
y = rand(n)
y = rand(m,n)
Giải thích:
– y: tên ma trận.
-n: tạo ma trận có n hàng, n cột.
-m, n: tạo ma trận có m hàng, n cột.
– Giá trị của các phần tử nằm trong khoảng [0 1]
Ví dụ:
>>y = rand(3)
y =
0.9340 0.0920 0.7012
0.8462 0.6539 0.7622
0.5269 0.4160 0.7622
>> y = rand(3,5)
y =
0.2625 0.3282 0.9910 0.9826 0.6515
0.0475 0.6326 0.3653 0.7227 0.0727
0.7361 0.7564 0.2470 0.7534 0.6316
32.Lệnh ROT90 : Xoay ma trận 900.
– Cú pháp:
b = rot90(a)
– Giải thích:
b: ma trận đã được xoay 900
a: ma trận cần xoay.
Ví dụ:
>>a=[1 2 3; 4 5 6; 7 8 9]
a =
1 2 3
4 5 6
7 8 9
>> b = rot90(a)
b =
3 6 9
2 5 8
1 4 7
33.Lệnh isempty : Kiểm tra xem ma trận có là ma trận rỗng không
– Cú pháp : isempty(A)
– Giải thích :
A là ma trận cho trước , nếu ans =0 nghĩa là A không phải ma trận rỗng, nếu ans =1 thì ma trận đã cho là ma trận rộng
- Ví dụ
>> B= zeros(4)
B =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
>>isempty(B)
ans =
0 % B không là ma trận rỗng
>> A= []
A =
[]>>isempty(A)
ans =
1 % A là ma trận rỗng
34.Lệnh DIAG : Tạo ma trận mới và xử lý đường chéo theo quy ước.
– Cú pháp:
v = diag(x)
v = diag(x,k)
> Giải thích:
– x: là vector có n phần tử.
– v: là ma trận được tạo ra từ x theo quy tắc: số hàng bằng số cột và các phần tử của x nằm trên đường chéo của v.
– k: tham số định dạng cho v, số hàng và cột của v = n + abs(k).
– Nếu k = 0 đường chéo của v chính là các phần tử của x
– Nếu k > 0 các phần tử của x nằm phía trên đường chéo v
– Nếu k < 0 các phần tử của x nằm phía dưới đường chéo v
Ví dụ:
>>x = [ 2 1 9 5 4];
v = diag(x)
v =
2 0 0 0 0
0 1 0 0 0
0 0 9 0 0
0 0 0 0 4
>>v1 = diag(x,2)
v1 =
0 0 2 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 9 0 0
0 0 0 0 0 5 0
0 0 0 0 0 0 4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
>>v2 = diag(x,0)
v2 =
2 0 0 0 0
0 1 0 0 0
0 0 9 0 0
0 0 0 5 0
0 0 0 0 4
>>v3 = diag(x,-2)
v3 =
0 0 0 0 0 0 0
0 0 0 0 0 0 0
2 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 9 0 0 0 0
0 0 0 5 0 0 0
0 0 0 0 4 0 0
Phần 3 MỘT SỐ LỆNH LẦN KHÔNG GIAN VECTOR, KHÔNG GIAN EUCLIDE, TRỊ GIÊNG
1. Lệnh dot:( tính tích vô hướng 2 vectơ)
-Cú pháp :dot(u,v) – u,v:hai vectơ cho trước
Ví dụ: >> u=[1 2 3]
u =
1 2 3
>> v=[3 4 5]
v =
3 4 5
>> dot(u,v)
ans =
26
2. Lệnh cross(u,v) : Tích hữu hướng của u, v
Ví dụ : u= [ 2 5 3]
u =
2 5 3
>> v=[ 2 5 8]
v =
2 5 8
>> cross(u,v)
ans =
25 -10 0
3. Lệnh length : Tính chiều dài của vectơ
Ví dụ
x = [0 1 2 3 4 5 6 7 8 9]
l = length (x)
l = 10
» x = [01 09 77; 20 04 2001 ]
x =
1 9 77
20 4 2001
» l=length(x)
l = 6
4.Lệnh norm:(tính độ dài 1 vectơ bất kì)
-Cú pháp: norm(u) ; u là một vec tơ bất kì
Ví dụ: u=[1 2 3]
u =
1 2 3
>> norm(u)
ans =
3.7417
5.Lệnh qr:(trực chuẩn hóa họ vectơ cột A)
[P,]=qr(A) ; A là ma trận cột được tạo bởi họ véc tơVí dụ: Trong R^3 cho véc tơ u=(1,1,1).Hãy trực chuẩn véc tơ u.
>> A=[1 1 1]
A =
1
1
1
>> qr(A)
ans =
1.7321
-1.3660
-1.3660
6.Lệnh [P,D]=eig(A) : Chéo hóa
Ví dụ
A=[0 -8 6;-1 -8 7;1 -14 11]
A =
0 -8 6
-1 -8 7
1 -14 11
>> [P,D]=eig(A)
P =
-0.5774 -0.3244 0.2673
-0.5774 -0.4867 0.5345
-0.5774 -0.8111 0.8018
D =
-2.0000 0 0
0 3.0000 0
0 0 2.0000
7. Lệnh eig(H) : Trị riêng
Ví dụ
H=[1 2;3 4]
H =
1 2
3 4
>> eig(H)
ans =
-0.3723
5.3723
8. Lệnh max(X), min(X) : Trả về giá trị lớn nhất và nhỏ nhất trong vector X
Ví dụ >> X=[ 2 5 9; 6 8 3; 4 2 4]
X =
2 5 9
6 8 3
4 2 4
>> max(X)
ans = 6 8 9
>> min(X)
ans =
2 2 3